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Abstract

Diminished Reality (DR) techniques allow for the removal of real-world objects in augmented
environments, offering a unique approach to modulating human perception through immer-
sive spatial computing. This thesis proposes and evaluates a novel cross-platform DR pipeline
designed to remove an object in real-time on head-mounted displays (HMDs) including the
HoloLens2 and Apple Vision Pro (AVP). This thesis details an image processing pipeline,
primarily built for the AVP, that integrates deep learning segmentation and inpainting (e.g.
SAM, LaMa), optimized for on-device inference using Core ML. The work evaluates visual
coherence of a sample image set created through the novel DR pipeline using vision-language
models (VLMs) as a scalable proxy for human perception. This work concludes that real-
time DR is feasible on current-generation hardware and holds promise for cognitive and
perceptual interventions in industrial training, education, and therapeutic contexts.

1 Introduction

Augmented Reality (AR) technologies are primed to transform human interaction with phys-
ical reality by overlaying digital information onto the real-world environment. Diminished
Reality (DR) exists as a subdomain of AR and involves the selective removal or suppres-
sion of visual elements. DR’s unique ability to "subtract” rather than "add” to a user’s
vision introduces new potential for reducing distractions or improving situational awareness,
thus providing applications in education, cognitive therapy, industrial safety, and immersive
entertainment|[!].

Recent hardware developments in head-mounted displays (HMDs) have enabled advanced
spatial computing capabilities. Although Microsoft’s HoloLens 2 (HL2) is no longer a cutting-
edge device, it provides a robust platform for exploring the feasibility of DR techniques using
Unity and the Mixed Reality Toolkit (MRTK). Many of its spatial mapping capabilities and
its developer ecosystem are reflected in more recent HMDs such as the Apple Vision Pro



(AVP) and the Meta Quest Pro, making it ideal for prototyping. However, its optical see-
through (OST) and additive-only rendering architecture limits its ability to convincingly
remove objects from view—in optical see-through interfaces, darker objects appear more
transparent, as beam-splitting does not effectively prevent real-world light from interfering
with virtual images[2]. As such, it serves primarily as an initial testbed in this thesis.

In contrast, the AVP provides provides full video see-through (VST) capabilities, which
enables direct manipulation of pixel content for more immersive DR applications. Although
direct access to raw images is limited to enterprise licenses, a workaround to obtain raw
images is provided via screen sharing. The AVP’s hardware specifications also feature a
powerful Neural Engine supporting real-time on-device ML inferencing, allowing for a more
integrated and scalable image processing pipeline.

The central climax of this thesis is to build and evaluate an efficient real-time DR pipeline
that can be deployed across platforms and adapted to their capabilities. For DR to be
adopted in practice, especially on head-mounted displays (HMDs), its output must appear
visually coherent and realistic. Visual coherence here refers to how seamlessly the modified
region blends with the surrounding environment and appears plausible to the human eye.

Recent advances in VLM-based assessment inform of its novelty as a scalable, Al-driven
alternative to traditional user studies. The VLM method allows DR-generated images to
be scored on perceptual quality, such as blending, lighting, texture, occlusion, and artifact
detection — evaluating DR through this lens provides both a practical benchmark and a
stepping stone toward more immersive, real-time applications.

2 Literature Review

2.1 Pipeline Considerations for DR

DR techniques have roots in computer vision, image editing, and perceptual psychology.
Earlier methods employed simple computer vision algorithms such as Telea and Navier-
Stokes inpainting to fill regions of interest. Although these techniques are suitable for static
or low-complexity scenes, they fail in dynamic, real-world settings.

Recent progress in deep learning has introduced state-of-the-art models like Large Mask
Inpainting with Fourier Convolutions (LaMa) [3] and AOT-GAN [1], which can fill missing
image regions with high semantic consistency, significantly improving upon classical inpaint-
ing techniques. Segmentation methods have also continually evolved, with tools like Segment
Anything Model (SAM), FastSAM, and EdgeSAM enabling fast and flexible ROI extraction,
even on-device [0, 6, 7].

The choice of hardware platform heavily influences DR strategy. HL2’s additive rendering
model prevents true occlusion of objects, making it ill-suited for realistic DR effects. Con-
versely, AVP’s VST HMD architecture allows pixel-by-pixel control, enabling realistic object
removal through compositing, a key requirement for immersive DR. Further, the AVP’s im-
provements on spatial tracking features, such as responsiveness and tracking accuracy, in
comparison to competitors in the field, prime it as a strong device for the heavy workload
task of DR [8]. Moreover, Apple’s Core ML pipeline provides a user friendly, comprehensive
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method of incorporating ML models in lightweight form for deployment on edge devices,
such as i0S. The AVP is shown to have strong processing power built around ML processing
compared to other HMDs, which makes it a suitable choice of HMD for Vision-heavy tasks

[9].

2.2 Applications of DR and Influencing cognitive load

Literature across psychology and human-computer interaction further supports the utility of
DR in managing attentional load. While traditionally, augmented reality systems improve
task focus by overlaying helpful cues or information, thereby reducing cognitive load through
guidance, DR takes the opposite approach yet aims for a similar outcome: subtracting irrel-
evant inputs to diminish distraction and enhance the user’s cognitive performance. Studies
show that distraction caused by visual or mobile stimuli—such as cell phones or unrelated
content—can significantly impact attention span, learning outcomes, and information re-
call in both academic and real-world settings[10), 11, 12]. The concept of divided attention
highlights that multitasking or visual clutter can deteriorate task performance, particularly
under high perceptual load[!3].

In addition, attentional tunneling, a phenomenon in which users fixate too strongly on
virtual content to the detriment of surrounding physical awareness, has been documented in
AR-supported learning environments[11]. While traditional AR may unintentionally exac-
erbate this effect, DR has the potential to reverse this by guiding attention toward relevant
stimuli through saliency reduction. Visual distraction filtering and clutter removal, such as
suppressing salient objects during search, have been shown to improve task efficiency and
reduce error rates[15].

Along this vein, DR’s strong potential application in the realm of cognitive load reduction
has been demonstrated through recent experimental studies on cognitive distraction. For
instance, Lee and Kim demonstrated that using an AR headset to “visually cancel out”
a nearby smartphone (a common distracting object) significantly mitigates the cognitive
distraction caused by its mere presence—with effects comparable to physically removing
the phone from the room [16]. This finding underscores the potential of DR techniques to
enhance focus: the AR-based removal of the phone led to improved performance on cognitive
tasks, essentially freeing the user from the “brain drain” effect of an ever-present device.

Together, these studies point to the broader cognitive value of DR, namely, that re-
duced visual clutter and selective masking can support improved decision making, memory
encoding, and task participation in information-rich environments.

2.3 Evaluation of AR Content by VLMs

While DR has been considered in prior work for cognitive modulation and distraction reduc-
tion, its success hinges on its perceptual realism—a factor often evaluated through subjec-
tive user studies. However, an emerging body of research shows that vision-language models
(VLMs) can approximate human perception in AR image quality tasks. Duan et al. intro-
duced the DiverseAR dataset, revealing that VLMs achieve up to 93% accuracy in perceiving
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and 71% in describing AR elements within images, highlighting their potential as proxies for
human evaluation [17].

More relevantly, Duan et al. also compiled the ARQA dataset, composed of over 1,100
real-world and AR-sample image pairs from four AR platforms. Their work demonstrates
how VLMs can rate images across specific visual factors: lighting direction and intensity,
shadow realism, occlusion handling, and spatial plausibility [18]. Similarly, Itoh et al. de-
scribe visual coherence as a holistic measure that includes color and lighting consistency;,
texture continuity, artifact minimization, and object blending [19].

Although VLMs remain limited to static image interpretation, they represent a powerful
tool for benchmarking DR realism. Future work may extend this approach to video-based
assessment or real-time feedback loops for AR systems.

3 Methodology

3.1 System Architecture

The DR system, independent of hardware, consists of three main components: image ac-
quisition, image processing, and image rendering. On the HL2, images are captured via the
Photo-Video camera and sent to an edge server via TCP. On the AVP, two pipelines are
outlined: image frames can be received over HT'TP using a FastAPI-based pipeline for an
edge-server based approach, or an on-device approach can be used via optimization of ML
models using Core ML.

The HL2 was used primarily to test the feasibility of bounding box-based DR and back
projection, though its additive-only rendering required visual workarounds that limited re-
alism. These constraints motivated the transition to AVP, where VST allows greater visual
flexibility. Once received, images are passed through a segmentation module (e.g., Edge-
SAM) to identify objects for removal. The resulting mask is processed by an inpainting
module (e.g., LaMa or AOT-GAN), and the completed image is sent back to the headset for
rendering. The processed image is then used to texture either a flat surface (in the case of 2D
projection) or a localized 3D mesh in the spatial environment. The latter provides stronger
immersion, especially when combined with techniques like triplanar mapping using surface
normals, which avoids stretching of textures that can occur with traditional UV mapping,
particularly on irregular shapes [20].

The general pipeline operates as follows:

1. Capture: Image frames are acquired from the main camera (AVP) or PV camera
(HL2).

2. Segmentation: ROIs are identified using FastSAM, EdgeSAM, or U?-Net.

3. Inpainting: Inpainting is performed using LaMa or AOT-GAN depending on available
compute resources.

4. Mesh Localization: Bounding box or raycast methods are used to define a spatial
region for the texture.
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(a) Original Image (b) Telea Inpainted Image

Figure 1: Inpainting using edge-server in real-time on the HL2

5. Rendering: The processed image is mapped using projective or triplanar texture
mapping

3.2 AVP-Specific On-Device Pipeline

This section proposes a real-time diminished reality (DR) pipeline for the Apple Vision Pro
(AVP), focusing on image segmentation, object tracking, and deep inpainting—each opti-
mized for the computational characteristics of head-mounted displays. The overall approach
integrates Core ML, Metal shaders, and a photogrammetry-based object recognition pipeline
to deliver an on-device experience with minimal latency [See Figure 4].

3.2.1 Image Segmentation with EdgeSAM

A central step in diminished reality is locating the object to be removed, which requires
isolating a meaningful Region of Interest (ROI). This work adopts a point-prompt-based
segmentation approach, wherein a single 2D point—generated either arbitrarily, by user
input, or tracked object—is used to prompt a mask prediction. This segmentation task is
handled using an adapted Core ML-converted EdgeSAM model that performs lightweight
image segmentation on-device, returning a binary mask that identifies the object region to
remove.
The output of this step is twofold:

1. The raw image (RGB input)
2. The masked image, in which the selected ROI is occluded using the binary mask.

These two images are passed as inputs to the inpainting model. This dual-input design
ensures that the inpainting model has access to contextual scene information while clearly
identifying the region to synthesize. The segmentation step is critical not only for quality
but for computational efficiency, as smaller, well-targeted masks enable more localized and
tractable inpainting inference.
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Metal shaders are employed to preprocess and format the point prompt and image tensors
efficiently, ensuring compatibility with the GPU-accelerated inference engine on the AVP.

3.2.2 Deep Inpainting with Core ML

The inpainting model used in this work is derived from the Big LaMa (Large Mask Fourier
Inpainting) model[3], a state-of-the-art deep learning architecture known for high-quality
reconstructions in occluded image regions. In its original form, Big LaMa contains over 51
million parameters and is too large for most edge devices. Using Core ML’s quantization and
compression pipelines, the model is successfully converted to a manageable 216.6MB Core
ML-compatible format, enabling real-time use on AVP. Inference is handled entirely on-
device, interfacing directly with the AVP’s Neural Engine and GPU. By leveraging Apple’s
Metal Compute Pipeline, this implementation bypasses traditional CPU bottlenecks. A
custom Metal shader is used to handle preprocessing (e.g., cropping, normalization, tiling),
and output compositing is done efficiently in post-processing.

As inpainting is the most computationally expensive step of the pipeline, the system
architecture is optimized to reduce the inpainted area as much as possible. Only masked
regions are passed into the heavy inference step, enabling reduced latency and improved
frame rates for real-time applications.

3.2.3 Object Tracking with Photogrammetry

Unlike traditional 2D object tracking pipelines (e.g., YOLO), this work utilizes a 3D pho-
togrammetry based tracking system. A known object is scanned using multiple 2D images
captured from varying angles. These images are processed into a high-fidelity .usdz 3D
model using a photogrammetry toolchain, and the resulting model is used to generate a
Core ML object classifier. At runtime, this classifier enables robust object recognition across
varying viewpoints. Since the model has been trained on a complete 3D representation, it
avoids the temporal lag that can occur when an object rotates or is seen from an uncommon
angle. This ensures seamless performance during object manipulation in AR.

The primary limitation of this method is its reliance on pre-known objects. A setup
phase is required where the object is captured and processed into a .usdz format. While
this makes the system robust, it restricts spontaneity. Nonetheless, the object classifier model
is lightweight enough for on-device inference and does not require server communication once

loaded.

3.2.4 Core ML Integration and Metal Optimization

To ensure low-latency inference on-device, this work uses Apple’s Core ML framework for
both segmentation and inpainting. Pretrained models such as Big LaMa for large-mask in-
painting are converted from PyTorch and TensorFlow formats into Core ML models. Quan-
tization and model compression reduce the memory footprint significantly (e.g., Big LaMa
is compressed to 216.6MB), facilitating deployment on AVP hardware. Metal shaders are
employed to optimize both preprocessing (e.g., normalization, padding) and post-processing
steps (e.g., compositing, overlay) [See Figure 3|. Inputs are fed into the GPU through a Metal
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Figure 3: Metal Kernel Processing Pipeline for Machine Learning Models

Compute Pipeline that interfaces with Core ML’s command buffer and encoder-decoder
pipeline, taking advantage of AVP’s Neural Engine and GPU for accelerated performance.

3.2.5 Raw Image Access on the AVP

One of the major challenges with the AVP is the lack of access to raw camera images
without an enterprise developer license. To circumvent this, a screen sharing workaround is
implemented. The AVP screen is streamed in real-time to a connected macOS device using
the built-in screen sharing API. This image stream is captured on the Mac and sent to a
Python-based TCP server, which acts as a proxy for raw image access on the AVP. The
screen captured image is then relayed back to the AVP, for inpainting and segmentation task
on-device.

This setup simulates an edge-server architecture but introduces noticeable latency, pri-
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Figure 4: On-Device Diminished Reality Pipeline for AVP

(a) Original Image (b) LaMa Inpainted Image

Figure 5: Inpainting with AVP On-Device Using LaMa

marily due to the round-trip overhead of capturing, transmitting, and re-rendering image
data. Optimizing this architecture—by, for instance, embedding bidirectional communica-
tion within the screen sharing protocol or avoiding multiple port usage—represents an area
of ongoing exploration. Furthermore, images received via screen sharing do not capture
true raw data, but rather the pass-through augmented image data that includes AR holo-
grams and models. As such, image processing may be done on a milliseconds previous image
frame, depending on the latency/delay of frame transmission — which significantly hinders
the usage of this pipeline.
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4 Evaluation of Diminished Reality Visual Coherence
by Vision Language Models

This thesis adopts the definition for visual coherence defined by Itoh et al. (Section 2.3), to
guide DR evaluation. Rather than relying exclusively on subjective participant ratings or
basic image similarity metrics, this work uses VLMSs as a proxy for human /user evaluation of
DR images. Duan et al. demonstrate that making prompts task-aware, without specifying
AR or DR generated content removes cases of hallucination or bias from the VLM evalu-
ation. Beyond this, when prompted to justify reasoning based on physical plausability in
the scene, the VLMs accuracy is shown to improve [17]. VLMs are thus prompted with the
following targeted question, which allows the VLM to focus on the most relevant perceptual
features while abstracting away non-essential visual details:

"This is a real-world image in which one or more objects may have been digitally altered,
reduced, or obscured. If you identify such an object, please explain how its removal affects
the visual coherence of the scene at the location where the object was present. Consider how
well that region integrates with its surroundings in terms of spatial alignment, lighting and
shadows, texture and color blending, and the presence of artifacts or inconsistencies. First,
rate the visual coherence of the edited region only, on a scale from 1 (poorly integrated) to 5
(perfectly seamless). Then, rate the overall visual coherence of the image, on a scale from 1
(poorly integrated) to 5 (perfectly seamless).”

This prompt directs the model’s attention toward the edited region and invites judgment
across key criteria identified in prior work: color consistency, lighting accuracy, absence of
artifacts, seamless blending, and plausible spatial geometry. These ratings serve as a proxy
for visual realism in lieu of a full user study.

For image data collection, three different objects were used: an orange Charmander
figurine, a Logitech computer mouse, and a Samsung Galaxy S25 phone. These models were
scanned as .usdz objects via photogrammetry of image sets, either through the use of a
curated image sequence or via the Reality Composer app on new-generation iPhones. Core
ML reference objects were trained on each of the files and inputted into the app at runtime
for object tracking. 98 images were collected through the DR pipeline on the AVP using
the three objects (33 Charmander figurine photos, 20 Logitech mouse photos, 45 Samsung
Galaxy S25 photos), with various different backgrounds and angles to represent a diverse
range of possible DR environments. GPT-40 was prompted to provide ratings of visual
coherence on a scale of 1-5. The results are aggregated in Section 5.3.

5 Results

5.1 HoloLens 2

The HL2 pipeline successfully demonstrated back-projected textures based on bounding
boxes from image analysis. Frame updates occurred around every 500ms, which was accept-
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(a) Charmander Figure (b) Logitech Mouse

Figure 6: DR Prototype Image Results with Known Background

able for static or slowly changing scenes. However, hologram positioning was offset due to
camera position relative to the eyes.

Nevertheless, HL2’s additive-only rendering prevented true occlusion, limiting the DR
illusion - any darker background surfaces appeared transparent or translucent, exposing the
object to be diminished. These findings validated HL2’s role as a prototyping platform but
underscored the need for a VST device for compelling DR.

5.2 Apple Vision Pro

The AVP’s VST architecture allowed for more immersive DR via object tracking, fast and
reactive image processing, and pixel editing capability. With Core MLL—LaMa and EdgeSAM
running on-device, latency was minimal. Real-time projection of inpainted regions onto
spatial meshes was achieved with high visual fidelity.! 2

Inference times were reduced to below 100ms per frame for segmentation and inpainting.
Visual alignment remained an issue in stereo view but was mostly resolved using projection
correction algorithms. Visual pose delay was also observed due to the smooth lerp feature
of the model’s movement, but did not affect the functionality of the app.

5.3 Results from VLM Evaluation

The visual coherence of three digitally removed objects — a Charmander figurine, a com-
puter mouse, and a Samsung Galaxy phone — was evaluated across a range of real-world
backgrounds. Two visual coherence metrics were assessed using a vision-language model:
overall image coherence and edited region coherence. In three instances involving the Sam-
sung Galaxy phone, the VLM did not detect any significant visual anomalies indicative of
object removal. Edited region coherence scores ranged from 2 to 5, while overall image

Demonstration videos of the concept are found here: https://duke.is/drvideol
https://duke.is/drvideo2
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coherence scores ranged from 3 to 5. Notably, several images were assigned the maximum
coherence score, suggesting that the visual edits were judged to be indistinguishable from
unaltered imagery (Figure 9). Conversely, other scenes exhibited lower coherence ratings,
reflecting noticeable disruptions or artifacts following object removal (Figure 10).

As shown in Figure 7, the Samsung Galaxy phone model achieved the highest average
edited region coherence and overall visual coherence (3.60 and 4.24, respectively), followed by
the mouse (2.95 and 3.75), and the Charmander figure (2.85 and 3.70). A similar trend was
observed in overall coherence, though all objects scored higher with the overall coherence
score than edited region score, suggesting that there are some improvements that can be
made to the existing pipeline to improve upon local visual artifacts in scene.

6 Discussion

This thesis proposes and evaluates a novel DR pipeline using visual coherence as a core metric
for effectiveness of the pipeline. HL2 served as an effective tool for early feasibility testing
of DR pipelines, although its optical see-through design inherently restricted the illusion of
object removal. In contrast, AVP’s VST display and compute capacity demonstrated greater
suitability for DR.

Evaluation by GPT-40 of the DR-generated scene images reveals that on-device diminish-
ing reality is highly feasible, and can be accomplished in real-time given a few optimizations
to existing computer vision architectures. While overall visual coherence with this dimin-
ished reality pipeline remains relatively high (;3), there is substantial room for improvement
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in the local visual coherence of digitally reduced objects given an average score | 3. Notably,
the lowest overall coherence score observed was 3, suggesting that in holistic views of the
scene, diminished objects do not significantly disrupt the visual realism of the scene and are
not overly conspicuous to the viewer. This finding implies that the DR system achieves a
level of visual plausibility comparable to typical AR hologram imagery through the lens of
a VLM.

Still, edited region coherence scores reveal nuanced challenges. For example, objects with
complex geometry often received lower coherence scores (typically rated a score of 2 or 3),
corresponding to misalignments between the inpainted textured mesh and underlying object
geometries, especially in the case of the Charmander figurine and the Logitech mouse. These
types of objects possess irregular surfaces with high vertex density, presenting challenges
towards the object tracking and segmentation processes of the pipeline. Inaccurate object
masks then lead to visible edge artifacts, poor alignment, and texture bleeding, all of which
degrade local visual realism and coherence.

In some instances, low coherence ratings were not influenced by the diminished object,
but rather by visual elements related to the grounding or UI entities of the AVP app —
for example, shadows cast by the application window or automatic adjustments to lighting.
This introduces a confounding factor, in that it becomes difficult to isolate whether low
visual coherence is attributable to the DR pipeline itself, or extraneous visual cues unrelated
to the object removal process. Future evaluation frameworks may benefit from explicitly
decoupling these elements to isolate coherence issues.

The image results involving the Samsung Galaxy phone were particularly promising. The
phone achieved consistently high average coherence scores above 3, with several scenarios
evaluated at the maximum rating of 5, and others not even recognized as digitally altered.
These results signify the ability of the DR pipeline to handle rectangular, well-defined objects
and suggest that inpainting-based diminishing texture synthesis is convincing when combined
with effective object tracking and segmentation.

However, another confounding factor may lie in the ambiguities in VLM perception of
the phone. Given its natural rectangular form and display screen, a partially masked or
imperfectly inpainted phone may still be interpreted by the VLM as a real phone screen,
rather than an altered region. This suggests that VLMs may be biased towards interpreting
certain geometries (such as rectangles) as plausible by default, even in the presence of subtle
inconsistencies. Further investigation into misguiding VLMs is needed, particularly in eval-
uating the reliability of VLM-based image quality and realism assessment for AR and DR
tasks.

In summary, these findings underscore the dynamic interplay between object complexity,
background context, VLM prompting, and the DR pipeline’s performance in determining the
visual plausibility of diminished reality. While the system performs well under controlled
conditions, future work will need to address and improve upon segmentation robustness,
object tracking mesh alignment, and strategies for decoupling coherence artifacts introduced
by non-DR elements such as external UL

Page 12



(c)
Figure 8: Images with No Diminished Reality Detected

(a) Charmander (b) Logitech Mouse

(c) Samsung Phone

Figure 9: Images with Edited Region Visual Coherence Scores of 5
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(a) Charmander (b) Logitech Mouse

(c) Samsung Phone

Figure 10: Images with Edited Region Visual Coherence Scores of 2

6.1 Limitations and Future Work

This research is primarily focused on the design and technical implementation of a diminished
reality pipeline for the Apple Vision Pro, with emphasis on demonstrating feasibility and
performance under constrained hardware and software conditions. While the current pipeline
effectively demonstrates diminished reality on the Apple Vision Pro, several areas remain
open for enhancement.

Object Tracking A key direction is enabling real-time 3D object learning to replace
the current reliance on pre-scanned .usdz models. Implementing a brief setup phase where
the user captures multiple views of an object could allow for spontaneous integration of
new items into the tracking system. This would significantly broaden the usability of the
pipeline, especially in dynamic or uncontrolled environments. In parallel, localized and
hierarchical inpainting strategies could be implemented to reduce the inference load. Rather
than processing the entire image, future models could focus on the masked region with sparse
attention mechanisms or adopt a multi-stage refinement process, improving runtime without
sacrificing visual quality.

Model Performance Improvements Additional performance improvements can be
achieved through deeper integration with the Metal Compute Pipeline. Techniques such as
adaptive tiling, asynchronous command encoding, and model pruning could further optimize
GPU utilization on the AVP. This would open the door to supporting more advanced models,
including diffusion-based inpainting or hybrid semantic-driven approaches, provided they are
quantized effectively for edge deployment, as well as motion-aware or kinetic DR systems
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for dynamic objects and environments. Moreover, expanding the model ecosystem beyond
EdgeSAM and LaMa—for example, using lightweight MobileSAM variants or incorporating
zero-shot learning methods—would allow for greater flexibility across diverse scenes and
objects.

Screen-Share Latency Addressing the latency introduced by screen-sharing workarounds
is essential for closing the gap between research prototypes and real-time DR applications.
Future work will explore optimizing the current image relay mechanism by embedding bi-
directional communication within the existing screen-sharing protocol, or utilizing shared
memory to eliminate redundant data transfer steps.

VLM Evaluation Improvements One major limitation of VLM evaluation was the
lack of background or raw images for comparison with the DR-altered images. Without a
reference image to compare, the VLMs understanding is lesser compared to previous similar
studies on VLM image quality assessment of AR scenarios. In the future, DR work on the
AVP should use background and DR image pairs to evaluate the scenee for a more holistic
set of modalities.

Training VLMs specifically for tasks in DR for higher fidelity, greater image quality as-
sessment, and more robust scene understanding capabilities would enable the integration of
domain-adapted perceptual systems into real-time AR pipelines. For example, models could
be fine-tuned on DR-specific datasets that include examples of object removal, inpainting
artifacts, and varying degrees of coherence. With improved visual sensitivity to issues like vi-
sual coherence artifacts, task-specialized VLMs could act as real-time evaluators—providing
automated feedback during the development of DR applications. In doing so, this integra-
tion would facilitate feedback-loop based optimization, allowing DR systems to dynamically
adjust processing methods to maximize perceptual realism and user quality of immersion
and quality of experience across diverse environments.

Future work will incorporate systematic benchmarking and user-centered evaluations to
better quantify performance, latency, perceptual realism, and potential cognitive impacts
of diminished reality in various environments. This initial implementation lays the neces-
sary foundation for such studies by validating the feasibility of the technical pipeline under
realistic constraints.

Altogether, these enhancements aim to make the DR experience more adaptive, efficient,
and deployable at scale, while providing tools for assessment and streamlining in the future.

7 Conclusion

This thesis presents a practical framework for building real-time diminished reality systems
on modern head-mounted displays, with a particular focus on development for the Apple
Vision Pro. By integrating image segmentation, deep inpainting, and spatial rendering into
a unified pipeline, this work demonstrates that DR is not only technically feasible on HMDs
but can also be implemented efficiently through optimized on-device inference and GPU
acceleration.

Rather than focusing solely on application-level metrics like task performance or cognitive
load, this work prioritizes perceptual realism as a foundational step towards application.
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VLM-based evaluation represents a promising proxy for human perception and sets the
stage for iterative improvements in DR rendering.

As DR transitions toward mainstream usage, tools that measure and improve visual co-

herence will be essential. This work contributes a framework for doing so and identifies
future directions for kinetic DR, dynamic scene evaluation, and hybrid human-Al assess-
ment, which highlight the potential DR has to reshape interaction paradigms by selectively
removing information to improve focus, reduce distraction, and enhance task-oriented envi-
ronments.
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